

The physics of RFID

Matt Reynolds Founding Partner ThingMagic LLC

Overview

- A brief history of RFID
- Elements of an RFID system
- An ideal tag model and practical constraints
- An ideal reader model and practical constraints
- The basics of radio frequency propagation
- The basics of RF interaction with materials
- Conclusions

A brief history of RFID

IC / VLSI networking supply chain scaling

Elements of an RFID system

ThingMagic

Four main elements: Tags, Readers, Antennas, and Network Systems

RF system variables

- 1. Choice of operating frequency
- 2. Tag IC, tag antenna design
- **3**. Reader, reader antenna design
- 4. Proximate materials
- 5. Sources of external interference

Major RFID markets by frequency

ThingMagic

US, Canada 125KHz 13.56MHz 902-928MHz EU Countries 125KHz 13.56MHz 868-870MHz

Japan 125KHz 13.56MHz 950-956MHz

RFID tags at different frequencies

Intermec

915 MHz

SCS

Matrics

Alien

Philips

TL

Intermec

2.4 GHz

SCS

Hitachi

Tag block diagram

What does a reader do?

Primary functions:
 Remotely power tags
 Establish a bidirectional data link
 Inventory tags, filter results
 Communicate with networked server(s)

Reader anatomy

Digital Signal Processor – (DSP)

Network . Processor

Reader block diagram

UHF (915MHz) reader RF section

A passive RFID communication model

Power from RF field

Reader->Tag Commands

Tag->Reader Responses

Tags

RFID Communication Channel Reader Antenna

Reader

Limiting factors for passive RFID

- 1. Reader transmitter power Pr (Gov't. limited)
- 2. Reader receiver sensitivity Sr
- 3. Reader antenna gain Gr (Gov't. limited)
- 4. Tag antenna gain Gt (Size limited)
- 5. Power required at tag Pt (Silicon process limited)
- 6. Tag modulator efficiency Et

Q: If a reader transmits **Pr** watts, how much power **Pt** does the tag receive at a separation distance **d**?

A: It depends-UHF (915MHz) : Far field propagation : Pt ∝ 1/d² HF (13.56MHz) : Inductive coupling : Pt ∝ 1/d⁶

Typical UHF system parameters

- Reader Transmit Power Pr = 30dBm (1 Watt)
- Reader Receiver Sensitivity Sr = -80dBm (10 ⁻¹¹ Watts)

- Reader Antenna Gain Gr = 6dBi
- Tag Power Requirement Pt = -10dBm (100 microwatts)
- Tag Antenna Gain Gt = 1dBi
- Tag Backscatter Efficiency Et = -20dB
- System operating wavelength λ = 33cm (915MHz)

UHF read range estimation

 Two cases: Tag power limited, or reader sensitivity limited.

Well designed systems are tag power limited.

 $Pt = \underline{Pr \cdot Gr \cdot Gt \cdot \lambda^2}$ $(4 \pi)^2 d^2$

 $d_{max} = sqrt (\underline{Pr \cdot Gr \cdot Gt \cdot \lambda^2})$ $(4 \pi)^2 Pt$ $d_{max} = 5.8 meters, theoretical maximum$

Reader sensitivity limit

- Let's assume we can build a tag IC requiring 1 microwatt (100 times better than current practice)
- d_{max} = 194 meters tag power limit for this hypothetical IC.

 $Pt -> r = \underline{Pr \cdot Gr \cdot Gt \cdot Et \cdot \lambda^2}$ (4 \pi)² d⁴

Pt->r = -99dBm

Noise power in 50 ohm resistor at 500KHz BW=4kTB=-109dBm. With a practical receiver of NF=3dB, Pn=-106dBm, SNR=10dB. This signal is at the edge of decodability.

Lessons from the simple model

Since Pt

 1/d²
 doubling read range requires 4X
 the transmitter power.

- More advanced CMOS process technology will help by reducing Pt.
- At large distances, reader sensitivity limitations dominate.

RF signals and materials

Materials in the RF field can have several effects:

- 1. Reflection / refraction
- 2. Absorption (loss)
- 3. Dielectric effects (detuning)
- 4. Complex propagation effects (photonic bandgap)

RF effects of common materials

Material	Effect(s) on RF signal
Cardboard	Absorption (moisture)
	Detuning (dielectric)
Conductive liquids (shampoo)	Absorption
Plastics	Detuning (dielectric)
Metals	Reflection
Groups of cans	Complex effects (lenses, filters)
	Reflection
Human body / animals	Absorption
	Detuning (dielectric)
	Reflection

Effective shielding of UHF signals

Any conductive material exhibits a skin depth effect

δ = sqrt (2 ρ / (2 π f μ_0)) where μ_0 = 4 π x10 ⁻⁷ H/m.

For aluminum, $\rho = 2.65 \times 10^{-6}$ ohm-cm. An effective aluminum shield is only 27 microns thick.

For dilute salt water, $\rho = 10^{-2}$ ohm-cm. An effective salt water shield is 1 mm thick.

Conclusions

- There are serious practical limitations to passive RFID read range.
- It is not practical to read a passive UHF RFID tag from Earth orbit.
- Improvements to tag IC design will yield commercially helpful, but probably privacyinsignificant increase in read range.
- UHF RFID signals are easily shielded by common materials (aluminum foil, antistatic bags, or your hands).